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Abstract

The current deployment of petascale systems and the

promise of future exascale systems have created un-

precedented challenges in how to manage failures in

such systems. While many parallel file systems provide

some sort of redundancy mechanism to cope with fail-

ures, such systems rely heavily on a hardware-based so-

lution such as RAID. In this paper, we propose a block

replication approach to store data redundantly. The ap-

proach does not depend on file system fault-tolerance

mechanisms. Rather, the approach replicates each file

block transparently within MPI-IO, using replication-

aware datatypes. File striping information is used to

place blocks from each replica in a separate storage

node. We have implemented this replication mecha-

nism in the MPI-IO layer. Our experimental results

using a microbenchmark and real MPI-IO applications

with PVFS and Lustre demonstrate that block replica-

tion in MPI-IO can be achieved transparently.

1. Introduction

With current petascale machines in operation and
the promise of exascale machines by the 2018 time
frame, there is a pressing concern that component fail-
ures in such systems will be unavoidable and that such
systems will need to operate in a faulty environment [5].
Furthermore, if the data projected in [24, 25] is cor-
rect, the reliability of storage systems will also be a big
concern for building such extreme-scale machines. For
instance, in storage systems in which no disk is shared,
the loss of a storage node implies the loss of all the
data stored on that node. Therefore, researchers have
proposed storing redundant data across storage nodes,
thus tolerating the failures in storage nodes [12, 24, 25].

In particular, efforts have focused on providing re-
dundancy from the storage node or device angle by
providing a certain type of RAID [22] underneath the

parallel file system. These techniques typically work at
a very fine granularity and suffer from high cost to pur-
chase hardware disk arrays. Applying this RAID type
of techniques in a parallel file systems also imposes ex-
cessively high overhead on a cluster because in such a
system, the disks are distributed and network latencies
are higher. For example, for reconstructing the missing
data block during data recovery, the system may need
to access two or more of the remaining data blocks,
depending on the redundancy level, from the nodes
on which it has been striped. Distributed file systems
for data-intensive computing domains like MapReduce
and Hadoop, on the other hand, use block replication
to provide data reliability [8, 14, 18]. Each block in
HDFS, for instance, is replicated to three nodes, one in
a local node and two in remote nodes to tolerate two
node failures. While such efforts have proved effective
in the context of Hadoop/MapReduce workloads, one
can conceivably achieve the same level of redundancy
in the context of MPI-IO applications without relying
on data redundancy mechanisms provided by the file
and storage systems.

In this paper we propose and evaluate a reliable
yet transparent mechanism for block replication in the
MPI-IO layer. To the best of our knowledge, this is
the first time such a mechanism has been investigated.
We use file layout information from the underlying file
system, easily extractable through the MPI hint mech-
anism, in order to decide how to lay out the original
file blocks in a fault domain aware manner. Using the
extracted file layout, we define a set of new file lay-
outs using MPI derived datatypes, each of which can
be used for writing the original data to a particular
storage node. An additional hint is used for passing
a user-defined replication factor. In other words, the
number of replicas in our approach is a configurable
option that the user can specify, say 3 as an example.
Therefore, the user can choose a trade-off between cost
(time and space) and reliability. We made all these
block replications transparent to applications by using



the profiling interface to MPI (PMPI).
Our experimental evaluations demonstrate that our

scheme transparently achieves block replication within
the context of MPI-IO applications, incurring reason-
able overhead as compared with cases without repli-
cation. Our write-oriented benchmark results showed
that our replication scheme incurs the same amount of
replication cost, by a replication factor, as empirically
observed in many prior studies. Since our replication
scheme is built on top of MPI-IO, it can work with
potentially any parallel file system that supports user-
tunable file layout information. Our experiments with
two commonly-used parallel file systems, PVFS and
Lustre, clearly exemplified the usefulness of such fea-
ture. We also demonstrate a mechanism that allows
users to determine the degree of replication by means
of a user hint passed to our shim layer. Therefore,
users can achieve different levels of fault tolerance de-
pending on the estimated system health and storage
capacity overhead.

The rest of the paper is organized as follows. Sec-
tion 2 describes the background for handling failures
through replication. Our replication technique in MPI-
IO environments is described in Section 3. Section 4
presents an experimental evaluation of our proposed
scheme. The limitations of our current implementa-
tion and possible future extensions to our approach are
described in Section 5. Section 6 briefly discusses re-
lated work on fault-tolerant I/O. Section 7 concludes
the paper with a summary of our key contributions.

2. Background

Failures are common in large-scale clusters; and
those systems must therefore be able to detect, tol-
erate, and recover from such failures easily [24]. Data
replication is one mechanism to ensure consistency be-
tween redundant resources by using multiple storage
nodes or other devices to improve the reliability and
availability of storage systems. Other techniques, such
as redundant block striping or erasure coding, are used
in parallel file systems such as GPFS, PVFS, Lus-
tre, and PanFS [13, 21, 23, 31]. Although these ap-
proaches are more space efficient, they incur a per-
formance penalty during data recovery. For example,
with striping, the system may need to read two or more
data blocks in order to reconstruct the missing block.
Replication, on the other hand, always requires only
one copy.

Distributed file systems for data-intensive applica-
tion domains, such as HDFS [8] and GFS [16], pro-
vide high reliability and availability through replica-
tion. For example, HDFS uses replication to maintain

at least three copies, one primary and two replicas, of
every data chunk. Applications can specify a higher (or
lower) replication factor during file creation time. All
copies of a chunk are stored in different data nodes us-
ing a rack-aware replica placement policy to improve
reliability as well as network bandwidth utilization.
Placing the first copy in the local storage node and
the second copy in a different node on the same rack
is intended to improve network bandwidth utilization
because local writes and intrarack communication are
faster than interrack communication. In order to tol-
erate a rack failure, the third copy is stored on a data
node in a different rack. In HDFS, a data node that re-
ceives a data chunk from the client will send the chunk
to two other data nodes that store the second and third
replicas.

Most parallel file systems, including PVFS and Lus-
tre, rely on a hardware-based reliability solution such
as RAID to get a larger number of drives and redun-
dancy. In this paper, we provide an HDFS-style repli-
cation in MPI-IO environments by forcing the client
application to write each replica to three different stor-
age nodes through replication-aware file layouts.

3. Our Approach

Our goal is to replicate file blocks in the MPI-
IO layer, thus providing data redundancy for fault
tolerance without relying on those mechanisms pro-
vided in parallel file systems and enterprise storage
systems. Conceptually, one can view our approach
as an application-oriented replication mechanism, be-
cause the data replication traffic is all initiated by ap-
plications.

Our overall approach is depicted in Figure 1. We
start by dividing the original file region into stripe
boundaries. In this figure, the original file block has
four blocks (0, 1, 2, and 3), each with the same stripe
size. Obtaining striping information is important be-
cause it ensures that the unit of block is placed in a sep-
arate node, allowing redundancy across storage nodes.
We then create three file layouts that have different
block displacements to enforce placing each block in a
different storage node. These layouts are used later for
setting a fileview for each write. The displacement—
that is, the number of bytes from the beginning of the
structure at which the given data item appears in it—in
each layout is determined by the replication factor. In
our approach, we use a replication factor of 3, as used
in HDFS [8]. This default replication factor is supposed
to tolerate two node failures, since it stores three repli-
cas. Using different displacement for each file block,
one can potentially store each replica in either a single
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Figure 1. Overview of our block replication

scheme in a single file when the replication

factor is 3. The original file has 4 blocks (from
0 to 3), and each block is exactly same the

stripe size (S).

file or a separate file. In our initial implementation, we
use a single round-robin file for storing three copies.
The implication of using three files in a round-robin
layout is discussed in Section 5.

We now present the details of our replication
scheme. To replicate the file across file stripe bound-
aries, we need detailed knowledge of the data layout for
a given file. In parallel file systems, this layout infor-
mation can be specified by using the following 3-tuple:

(start node, striping unit, striping factor),

where start node is the id of the first node where
the file gets striped, striping unit gives the stripe
size, and striping factor gives the number of nodes
(disks) used for striping. As an example, in Figure 1,
the original file is striped over all four nodes (No to
N3). Assuming that the stripe size is S and the total
file size is 4S (for illustrative purposes), the data layout
of this dataset can be expressed as (0, S, 4).

We note that many parallel file systems and I/O li-
braries for high-performance computing support calls
that convey to them the disk layout information when
the file is created through the MPI hint mechanism.
For instance, one can get or set the striping param-
eter by setting corresponding hints in the MPI Info

structure. Then, the striping information is passed
to the MPI File open calls parameter. We also note
that, while these three hints are used in ROMIO,
an implementation of MPI-IO, only striping unit

and striping factor are defined as MPI-2 predefined
hints. The start node hint is platform-specific.

Given that the MPI program will be extracting the
file layout information, we next define file layouts for
writing the three replicas. In MPI-IO applications, a
file is an ordered collection of typed data items. The
blocks of a file are replicated for fault tolerance. The
block size and replication factor are configurable per
file. An application can specify the number of repli-
cas of a file. The replication factor can be specified at
file creation time and remains the same value through-
out the execution time. With the file striping informa-
tion defined above, the type map for the original block,
Dorig can be described as follows:

Dorig = {(s0, d0), (s1, d1), ..., (sn−1, dn−1)},

where si and di are the stripe size and displacement
for the ith stripe, respectively, and n is the number
of file blocks in terms of stripe size. For example, the
type map for the original block depicted in Figure 1 is
described as {(S, 0), (S, S), (S, 2S), (S, 3S)}.

Assuming the replication factor is R, our scheme
next creates R number of datatypes, each representing
an individual replica depicted in Figure 1:

D0 = {(s0, d0), (s1, d1 + S ∗R), ...,

(sn−1, dn−1 + S ∗ (n− 1) ∗ R)},

D1 = {(s0, d0 + S), (s1, d1 + S + S ∗ R), ...,

(sn−1, dn−1 + S + S ∗ (n− 1) ∗ R)},

...

DR−1 = {(s0, d0 + S ∗ (R− 1)), ...,

(s1, d1 + S ∗ (R − 1) + S ∗ R),

(sn−1, dn−1 + S ∗ (R − 1) + S ∗ (n− 1) ∗ R)},

where S is the stripe size and n is the num-
ber of data blocks in terms of S. We use the
MPI Type create hindexed to specify the datatypes of
each replica. We note that one can achieve the same
datatypes for each replica using MPI Type indexed.
The function MPI Type indexed is identical to
MPI Type create hindexed except that block dis-
placements in array of displacements are specified
in multiples of the oldtype extent, rather than in
bytes [20].

It should be mentioned that our replication
scheme currently supports independent MPI I/O calls
only. Collective I/O calls typically comes with
MPI File set view calls. Therefore, there needs to
be an additional step in order to make our replication
scheme work with collective I/O. We discuss this issue
in Section 5. We also want to mention that our repli-
cation scheme does not create a correctness issue when
each process is writing with different offset values. This
is because the location is a function of the stripe size
as long as the correct fileview is used for each replica
write.
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Figure 2. Overview showing how our block
replication scheme implemented applica-

tions transparently. Note that no modifica-
tion is required for any other software stacks

including MPI-IO library and parallel file sys-

tems underneath.

To support our replication scheme transparently, we
need a shim layer that converts the original file write
requests to those for replication. In this paper, we
achieve this transparent replication using the profiling
interface to MPI (PMPI). We wrote about 400 lines
of PMPI module in C for our current implementation.
Figure 2 shows how our replication scheme is deployed
in the shim layer to interact with MPI-IO applications
and underlying file system components. The shim layer
intercepts the MPI-IO routines defined in the PMPI
module and performs triplication. In other words, if
the MPI client calls a normal file write call, the shim
layer builds three file layouts and sends three write re-
quests to the storage nodes using a corresponding file-
view.

To illustrate how our replication scheme in MPI-IO
works in practice, let us consider an example code in
Figure 3(a) that uses the normal MPI File write call.
This example code simply opens a file and writes N in-
tegers in it. The replication factor is defined as 3 by us-
ing the hint mechanism and passes the MPI File open

call (file creation) as an argument. Assuming the S is
1,048,576 bytes and at least three file servers are avail-
able, Figure 3(b) gives the shim code for achieving our
replication scheme. The data layouts for replication
are created once in the init() function.

We note that we used MPI File set view, a collec-
tive call, in order to set the fileview for each replica
being written by the independent write call. The only
way to safely call a collective function within an in-
dependent function is to make sure the collective func-
tion is collective over MPI COMM SELF. For this purpose,
we maintain in our shim layer a shadow file handle
(fh shadow) opened with MPI COMM SELF and use it in-
ternally. This could potentially lead to I/O consistency

char *fname = "test";
int *buf, N;

MPI_Info_create(&info);
MPI_Info_set(info, "replication_factor", "3");
MPI_File_open(..., fname, ..., info, &fh);

buf = (int *) malloc(SIZE);

N = SIZE/sizeof(int);

MPI_File_write(fh, buf, N, MPI_INT, &status);

(a) An example code

static int RF; /* replication factor */

static MPI_Datatype cur_dtype; /* current datatype */
static int initialized = 0;

static MPI_Datatype hindextype[RF];

init(MPI_Datatype dtype)
{

int *b[3]; /* block length */

MPI_Aint *d[3]; /* displacement */
MPI_Info info;

/* get replication factor passed from users */
MPI_Info_get(info, "replication_factor", &RF, ...);

/* define derived datatypes for specifying replicas */

for(i=0; i < ncount; i++)
{

for(j=0; j < RF; j++)
{

b[j][i] = S;

d[j][i] = S*j + S*i*RF;
}

}
for(i=0; i < RF; i++)
{

MPI_Type_create_hindexed(ncount, b[i], d[i],
dtype, &hindextype[i]);

MPI_type_commit(&hindextype[i]);
}

initialized = 1; /* set the init flag to 1 */
cur_dtype = dtype;

}

MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype dtype, ...)
{

if(initialized == 0 || dtype != cur_dtype)

init(dtype);

for(i=0; i < RF; i++)
{

/* set fileview that corresponds to each replica */
MPI_File_set_view(fh_shadow, 0, dtype, hindextype[i], ...);
PMPI_File_write(fh_shadow, buf, count, dtype, &status);

}
}

(b) PMPI routine

Figure 3. (a) Example code illustrating a typ-

ical MPI-IO example. (b) Code after apply-
ing our MPI-IO replication scheme when the

replication factor (RF) is set to 3.

issues, namely, the use of MPI COMM SELF may result in
a weaker MPI-IO consistency model than the user ex-
pects having opened the file with a different communi-
cator such as MPI COMM WORLD. To avoid this problem,
our shim layer also needs to internally close and reopen
the file when the user calls MPI File sync.



MPI_File_read(...)
{

/* try the 1st copy */

MPI_File_set_view(fh_shadow, 0, ..., hindextype[0], ...);
PMPI_File_read(fh_shadow, buf, nints, MPI_INT, &status);

if (status == ERROR)

{
/* try the 2nd copy */
MPI_File_set_view(fh_shadow, 0, ..., hindextype[1], ...);

PMPI_File_read(fh_shadow, buf, nints, MPI_INT, &status);
if (status == ERROR) {

/* try the 3rd (last) copy */
MPI_File_set_view(fh_shadow, 0, ..., hindextype[2], ...);
PMPI_File_read(fh_shadow, buf, nints, MPI_INT, &status);

}
}

}

Figure 4. Shim code illustrating how
MPI File read is performed in our block repli-

cated files. Reading appropriate file blocks
is handled in a completely user-transparent

manner.

Since our block replication scheme writes three repli-
cated blocks in a single file, we also need to use the
proper layout during read operations. Figure 4 shows
our shim code that describes our read mechanism. In
our implementation, the read request is always directed
to the first replica, meaning that the MPI File read is
performed using the first data layout (D0). If the ini-
tial read attempt is not successful because of failure in
any nodes that store the blocks in the first data layout,
our next attempt goes to the blocks in the second lay-
out. If more than three node failures occur, the read
operation eventually fails. We note that failure in a
read operation can be detected only if there is an error
in each PMPI File read call, typically incurring tens
of seconds of timeout value in current parallel file sys-
tems.

4. Experimental Evaluation

This section describes the experimental platform,
schemes, and benchmarks we used in our evaluation.
Also presented are the experimental results using a mi-
crobenchmark and real MPI-IO benchmarks with two
commonly used parallel file systems, Lustre and PVFS.

4.1. Experimental Setup

To demonstrate the applicability of our replication
scheme, we conducted a set of experiments on a cluster
of 24 nodes, each of which is equipped with dual Intel
Xeon Quad Core running at 2.66 GHz, 16 GB of main
memory, and 50 GB of local disk storage space. All
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Figure 5. Replication overhead in terms of
write completion time while varying the file

sizes when executed in conjunction with

PVFS and Lustre, respectively. We used 4 file
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nodes ran the Linux 2.6.22 kernel. We used MPICH2-
1.3.1 [4]. To demonstrate the applicability to different
file systems, we evaluated our scheme with two parallel
file systems, PVFS-2.8.1 [13] and Lustre 1.6.4.2 [21].
Both file systems were configured to use four storage
nodes, and the default stripe unit was set to 1 MB
(1,048,576 bytes). All other parameters were set to the
default values without further modification. In other
words, both file systems included no redundancy mech-
anisms by configuration.

We evaluated the proposed scheme using two
schemes. The first scheme, denoted “normal,” runs the
normal MPI-IO applications that do not employ any
replication underneath. We used either PVFS or Lus-
tre as an underlying parallel file system for our evalua-
tion. The second scheme, denoted “replication,” is an
implementation of our scheme, described in Section 3,
that triplicates data blocks in a single file. Since the
replication is performed in the shim layer we provide,
neither the applications nor the parallel file systems re-
quired any modification. We note that, while we used
the replication factor of 3 in our experiments, different
replication factors can be applied by using the MPI
hint mechanism as described in Section 3. All our ex-
periments were run three times to get average results.

4.2. Microbenchmark Results

Figure 5 shows the overall replication overheads in-
curred by our scheme as compared with the normal
case in terms of write completion. In this experiment,
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we ran a simple MPI program that opens a file and
writes to it. The graphs in Figure 5 are generated by
using one MPI client and four file servers while varying
the file sizes (1 MB to 512 MB). As we can see in the
figure, in both schemes the execution time increases as
the file size increases. Also, as expected, the replica-
tion incurs about 3x slower completion time for both
PVFS and Lustre. The reason is that the replicated
scheme makes three write operations per write.

Figure 6 presents the write completion time with
and without replication as the number of clients is
changed from 1 to 16. In this experiment, each MPI
client writes a unique file of 512 MB. Again, we present
the results with both PVFS and Lustre. We observe
similar trends in these graphs; both PVFS and Lustre
show almost identical performance behaviors with and
without replication. Since this experiment also involves
pure write-only workloads, the replication scheme in-
curs about 3x performance slowdown as compared with
the normal scheme.

We note that prior studies, those from data-intensive
distributed file systems, also experimentally showed
that the replication overhead is increased by a repli-
cation factor [3, 19, 28]. For example, Ko et al. [19]
showed that increasing the Reduce replication factor
to 2 doubled the job completion time. Therefore, we
conclude that our scheme does not incur any additional
overhead that would otherwise be needed to provide re-
dundancy, while being able to work with several of par-
allel file systems as evidenced by our evaluation with
both PVFS and Lustre. We also want to emphasize
that this transparent replication within MPI-IO layer

Table 1. Characteristics of application bench-
marks with the normal scheme.

Benchmark No. of Procs. Execution Time Dataset Size

BTIO 16 63.9 sec 419.43 MB

MADbench2 16 21.9 sec 4,848 MB

comes with user-tunable replication granularity (via
changing stripe unit during file creation) and replica-
tion factor, which is not feasible for hardware-based
RAID schemes.

4.3. Application Benchmarks Results

Our evaluation so far has made a case for our block
replication scheme in MPI-IO and showed that provid-
ing redundancy through triplication is feasible without
relying on mechanisms in the underlying parallel file
system. One might wonder, however, what the impact
would be on the performance of a real application. To
quantify this, we measured the performance of two real
I/O applications:

• BTIO: BTIO is an I/O version of the BT (block
tridiagonal) benchmark found in the NAS Par-
allel Benchmarks (NPB) suite [32]. The BTIO
benchmark performs MPI-IO writes and reads of
a nested strided datatype. The BTIO benchmark
was built from NPB version 3.3 with the “simple”
subtype and the Class A problem size. Class A
corresponds to a grid size of 64 x 64 x 64, which
writes in aggregate 419.43 MB of data to a shared
file every fifth timestep out of 200 total iterations.

• MADbench2: MADbench2 is a benchmark de-
rived from the MADspec data analysis code [7].
As part of its calculations, the MADspec code (and
likewise the MADbench2 benchmark) performs ex-
tremely large out-of-core matrix operations, re-
quiring successive writes and reads of large, con-
tiguous data from either shared or individual files.
We built the MADbench2 to generate unique (in-
dividual) filetype using MPI-IO. In this I/O setup,
each process writes its unique file, which corre-
sponds to about 303 MB.

The characteristics of these two real I/O bench-
marks are given in Table 1. Both applications are ex-
ecuted by using 16 MPI processes with PVFS as the
underlying file system. Since the behavior of PVFS and
Lustre is almost identical, as shown in our microbench-
mark results, we expect similar results when Lustre is
used.
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Figure 7 gives the performance of two real bench-
marks with and without our replication scheme. As we
can see from the figure, the replication scheme is slower
than the normal scheme, incurring 67.7% and 115.6%
for BTIO and MADBench2, respectively. The reason
is mainly that each I/O application exhibits different
I/O access patterns in terms of read/write ratios. In
other words, the more write intensive an application,
the higher the overhead incurred by the replication.

5. Discussion

Our discussion so far has presented one way of pro-
viding reliable MPI-IO through replication, but there
are some caveats as well. This section describes several
of these that need to be handled.
Dealing with collective I/O: The current im-
plementation of our replication scheme works only
with independent calls such as MPI File write and
MPI File write at. Many MPI-IO applications, how-
ever, use collective I/O because many of them can ben-
efit from data sieving and two-phase I/O. Our replica-
tion scheme uses replication-aware file layouts for writ-
ing each replica. Using derived datatypes to specify the
different block locations as a fileview argument, how-
ever, conflicts with using the fileview for a particular
process that is also described in a file datatype and
displacement. Therefore, in order to make our replica-
tion scheme work with applications that use collective
calls, our shim layer needs to generate a new derived
datatype that combines the user-specified datatypes
and our derived datatype for block replication. Spe-
cial care also needs to be made when two-phase I/O,
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an optimization in collective I/O, is turned on. This
is because, in two-phase I/O, each process first com-
municates with each other to determine what region to
write or read from the aggregate access region, thereby
making combining user-specified datatypes with our
datatypes for replication more complex.
Storage overhead: Our scheme achieves reliabil-
ity by replicating each file stripe across different file
servers. Therefore, it does not require RAID storage
on the file servers. However, the storage overhead in-
curred by replication increases with higher replication
factor and is much higher than RAID. For instance,
while conventional 8+2 RAID 6 encoding incurs 25%
storage capacity overhead, our triplication scheme in-
curs 200% overhead. Again, our focus in this paper
is not on comparing replication against erasure code.
However, we believe that selective replication [29] or
asynchronous and delayed encoding [27] can be used in
conjunction with our approach if the storage capacity
is under pressure.
Placing replicas in separate files: Our current
implementation stores replicated blocks in a single file
in which three replicas of the same stripe size each are
placed successively using different displacement values.
One can, however, achieve the same goal using multi-
ple files with different start node. This scheme, which
uses the same round-robin data layout in three sepa-
rate files, is depicted in Figure 8. Like other replica-
tion schemes, we need to have at least three storage
nodes in order to use this scheme. While the resulting
layout from this scheme looks similar to our single-file
approach, it differs in at least two ways. First, since
each replica is stored in a separate file for read/write
calls, it does not require complex data layouts. Second,
it has the same storage capacity as the single-file case,
but it also creates 3x number of files. This could be an
issue in metadata performance when applications use
per process write policy.
Nonblocking writes for replicas: In our imple-
mentation of writing replicas, we used the blocking
MPI-IO, that is, MPI File write, mainly because the



underlying ROMIO implementation does not support
nonblocking I/O for strided writes. Conceptually, one
can enhance the replication performance by hiding I/O
latency for writing replicas through nonblocking I/O.
This can be achieved by issuing three MPI File iwrite

calls for each replica and waiting for each MPI request
(via MPI wait) for each write to complete. This ap-
proach requires a modification to the ROMIO imple-
mentation, but we note that its performance gains are
tightly coupled with the characteristics of the intercon-
nection network used in storage nodes and the local
disk used in each storage node.

6. Related Work

Many techniques and algorithms have been pro-
posed for providing fault tolerance in file and storage
systems based on replication or erasure codes. In this
paper, however, we restrict our discussion to techniques
in the context of MPI and MPI-IO.

Several MPI extensions for fault tolerance exist,
such as FT-MPI [15] and VolpexMPI [2]; most are fo-
cused on providing capability of checkpointing/restart
in MPI processes [9, 30]. Wang et al. [30] proposed two
XOR-based double-erasure codes for in-memory check-
pointing for MPI programs. Brightwell et al. [9] pro-
posed and implemented two transparent redundancy
approaches to MPI applications, thus tolerating loss of
application processes and connectivity. Anand et al. [2]
proposed an MPI library, called VolpexMPI, that de-
ployed redundant MPI processes for dealing with un-
reliable execution environment. All these approaches
have concentrated on providing reliable execution of
MPI processes rather than on providing redundancy to
data stored on the storage systems.

Recent work has focused on providing redundancy
in MPI-IO and parallel file systems [17, 11, 1, 6, 2, 8,
26, 23]. Calderón [11] proposed a technique to provide
fault tolerance in MPI applications on PVFS file sys-
tems. Brinkmann et al. [10] presented data structures
that allow a continuous snapshot implementation in a
clustered storage environment. Amer et al. [1] stud-
ied the reliability of storage from the perspective of
using parity in redundant array layouts. Their pro-
posed layout, called SSPiRAL, offers lower MTTDLs
than complete 3 out of 6 erasure code, relying on sim-
ple pairwise parity computations. Birk and Kol [6] also
studied providing efficient reconstruction of data using
erasure correcting code in a peer-to-peer system. Tar-
geting data-intensive computing workloads, HDFS is
designed to store large files reliably in a large cluster [8].
HDFS uses triplication for fault tolerance; blocks of a
file are replicated by using a rack-aware replica place-

ment scheme. Like HDFS, our approach is also based
on replication, but it provides replication within the
context of MPI-IO.

The work most relevant to our study was conducted
by Gropp et al. [17], who used erasure code to pro-
vide a lazy redundancy mechanism in MPI environ-
ments. Our approach is similar to the lazy redun-
dancy technique in that we also use MPI datatypes
to provide fault tolerance, but our technique is based
on block replication. Unlike the lazy redundancy tech-
nique, which requires a modification to the ROMIO
MPI-IO implementation, our approach does not require
any modification to the MPI-IO library.

7. Conclusion and Future Work

In this paper, we have presented a block replication
scheme in the context of MPI-IO by using replication-
aware MPI datatypes. The proposed scheme uses MPI
derived datatypes to represent the replicated file lay-
out for providing reliability to MPI applications. Our
experimental results demonstrate that our scheme pro-
vides transparent block replication to MPI-based appli-
cations; as far as we know, this is the first approach to
provide this capability. We also show that our scheme
can be used in conjunction with any existing parallel
file system that allows one to extract and change the
underlying file striping information.

We plan to extend the ideas presented in the paper
in several ways. We want to explore a way to have the
data layout provide not only reliability but also better
read performance by using a different data layout for
each replica. We also plan to quantify the impact of
erasure code, such as the lazy redundancy scheme [17],
and our replication scheme on various I/O access pat-
terns.
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